128 research outputs found

    Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions

    Get PDF
    The nonnegative viscosity solutions to the infinite heat equation with homogeneous Dirichlet boundary conditions are shown to converge as time increases to infinity to a uniquely determined limit after a suitable time rescaling. The proof relies on the half-relaxed limits technique as well as interior positivity estimates and boundary estimates. The expansion of the support is also studied

    Moment bounds for the Smoluchowski equation and their consequences

    Full text link
    We prove uniform bounds on moments X_a = \sum_{m}{m^a f_m(x,t)} of the Smoluchowski coagulation equations with diffusion, valid in any dimension. If the collision propensities \alpha(n,m) of mass n and mass m particles grow more slowly than (n+m)(d(n) + d(m)), and the diffusion rate d(\cdot) is non-increasing and satisfies m^{-b_1} \leq d(m) \leq m^{-b_2} for some b_1 and b_2 satisfying 0 \leq b_2 < b_1 < \infty, then any weak solution satisfies X_a \in L^{\infty}(\mathbb{R}^d \times [0,T]) \cap L^1(\mathbb{R}^d \times [0,T]) for every a \in \mathbb{N} and T \in (0,\infty), (provided that certain moments of the initial data are finite). As a consequence, we infer that these conditions are sufficient to ensure uniqueness of a weak solution and its conservation of mass.Comment: 30 page

    On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density

    Get PDF
    We are concerned with the long time behaviour of solutions to the fractional porous medium equation with a variable spatial density. We prove that if the density decays slowly at infinity, then the solution approaches the Barenblatt-type solution of a proper singular fractional problem. If, on the contrary, the density decays rapidly at infinity, we show that the minimal solution multiplied by a suitable power of the time variable converges to the minimal solution of a certain fractional sublinear elliptic equation.Comment: To appear in DCDS-

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Second-order L2L^2-regularity in nonlinear elliptic problems

    Get PDF
    A second-order regularity theory is developed for solutions to a class of quasilinear elliptic equations in divergence form, including the pp-Laplace equation, with merely square-integrable right-hand side. Our results amount to the existence and square integrability of the weak derivatives of the nonlinear expression of the gradient under the divergence operator. This provides a nonlinear counterpart of the classical L2L^2-coercivity theory for linear problems, which is missing in the existing literature. Both local and global estimates are established. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required. If the domain is convex, no regularity of its boundary is needed at all

    Local and global behaviour of nonlinear equations with natural growth terms

    Full text link
    This paper concerns a study of the pointwise behaviour of positive solutions to certain quasi-linear elliptic equations with natural growth terms, under minimal regularity assumptions on the underlying coefficients. Our primary results consist of optimal pointwise estimates for positive solutions of such equations in terms of two local Wolff's potentials.Comment: In memory of Professor Nigel Kalto
    • 

    corecore